
P/N: 88A100021001

Top Port Analog MEMS Microphone Model: MMA100-021

Analog MEMS Microphone

MMA100-021

P/N: 88A100021001

Description

MMA100 is a top port analog microphone built with MEMS acoustic sensor and IC, and is available in SMD compliant package.

Features

•	Sensitivity	42 dB V/Pa
•	Good signal to noise ratio	59.5 dB(A)
•	Size	3.76 x 2.95 x 1.1mm
•	Stable sensitivity over power	supply range1.6 – 3.6V
•	Low Current consumption	typ. 130μA

Shielding suppression of EMI

Absolute maximum ratings

•	Supply Voltage	3.6V
•	Sound Pressure Level	160dB
•	Mechanical Shock	10000g
•	Vibration	Per MIL-STD-883 Method 2007, Test Condition A
•	Temperature Range	40°C to +85°C

Applications

The MMA100 is available for

- Mobile Devices
- Teleconferencing System
- Notebook & Portable & Tablet Devices
- Headsets & Bluetooth devices
- Consumer (MP3 players, PDA, recording devices)

Environmental tests

The materials, components, and products supplied to customer, must follow up the Merry. Co., LTD. Purchasing Spec of "Green Policy" and the document title is "Environmental Material Control Procedure" (DCC.NO:GP2-001).

Ordering Information

PART NUMBER	TEMP RANGE	QUANTITY PER REEL	
88A100021001	-40 to 85 °C	5,200	

STORAGE SPECIFICATIONS: MSL (moisture sensitivity level) Class 1.

CAUTION: Stresses above those listed in "Absolute maximum ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

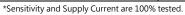
Analog MEMS Microphone

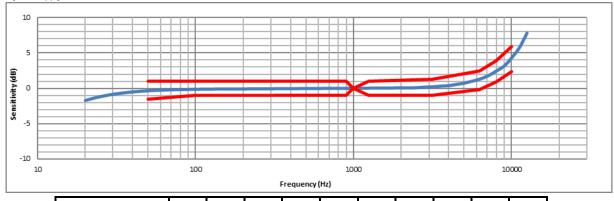
MMA100-021

P/N: 88A100021001

Contents

1. Product Specifications	3
2. Dimensions and Pin Description	
3. Recommended Customer Landing Pattern	
4. Recommended Interface Circuit	6
5. Soldering Reflow Profile	7
6. Packing Information	8
7. Reliability	g
8 Specification Revisions	10


P/N: 88A100021001


1. Product Specifications

Unless otherwise specified, test conditions are show as below:

• Temperature= $25 \pm 2 \,^{\circ}$ C, and room humidity= $60 \pm 10\%$

		Condition		Limits		
Items	Symbol Condition		Min.	Nom.	Max.	Unit
		Acoustic		•		
Directivity		Omni-direction	nal			
Frequency Response	LFRO	Low frequency −3 dB point		15		Hz
Sensitivity	S	@1kHz (0dB=1V/Pa)	-43	-42	-41	dB V/Pa
Signal-to-noise ratio	S/N	@1kHz (0dB= 1V/Pa)		59.5		dB(A)
		At 94 dB SPL @ 1kHz			0.1	%
Total harmonic distortion	THD	At 110 dB SPL @ 1kHz			0.3	%
		THD 1% @ 1kHz		124		dB SPL
Maximum Acoustic Input	AOP	THD 10% @ 1kHz		134		dB SPL
Polarity		No inverting				
		Electrical				
Supply voltage	V _{DD}		1.6		3.6	V
Output DC Voltage	$V_{\text{out,dc}}$			1		V
Output DC impedance	Rout			160	250	Ω
Current consumption	I _{DSS}	Vdd=3.0 volts	90	130	170	
Power Supply Rejection	PSR	100mVpp square wave@217Hz, VDD=3.0V, A-wt		-97		dB V(A)
Power Supply Rejection Ratio	PSRR	200mVpp sinewave@ 1kHz, VDD=& 3.0V		67		dB
Environmental						
Operating temperature			-40	-	+85	°C
Storage temperature			-40	-	+100	°C

Frequency(Hz)	50	100	315	900	1K	1.25K	3.15K	6.3K	8K	10k
Upper Limit(dB)	+1.0	+1.0	+1.0	+1.0	0	+1.0	+1.3	+2.5	+3.9	+5.8
Lower Limit(dB)	-1.5	-1.0	-1.0	-1.0	0	-1.0	-1.0	-0.2	+0.9	+2.4

Figure 1: Frequency Response Mask (Normalized to 1 kHz)

P/N: 88A100021001

2. Dimensions and Pin Description

The MMA100 is a top-port microphone designed specifically to be a drop-in replacement for other analog MEMS microphones with 3.76 x 2.95mm footprint.

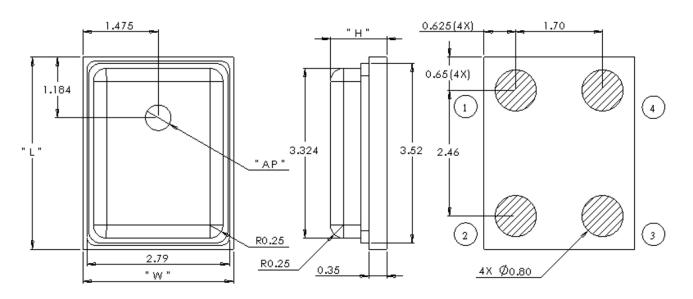


Figure 2: Pin configurations (Top view/Side view/Bottom view) (unit: mm)

Pin	Function	Dir	Description
1	VDD	Р	Power supply
2	NC	NC	connect to ground
3	GND	G	Ground
4	OUT	0	Data output

Item	Dim.	Tol. (±)	Units
Length (L)	3.76	0.1	mm
Width (W)	2.95	0.1	mm
Height (H)	1.1	0.1	mm
Port (AP)	0.5	0.1	mm

Note:

Pick area extends to 0.25 mm of any edge or hole unless otherwise specified. Tolerance is ± 0.15 mm unless otherwise specified.

P/N: 88A100021001

3. Recommended Customer Landing Pattern

The recommended PCB land pattern for the MMA100 should have a 1:1 ratio to the solder pads on the microphone package. Care should be taken to avoid applying solder paste to the sound hole in PCB. The dimensions of suggested solder paste pattern refer to Figure 3.

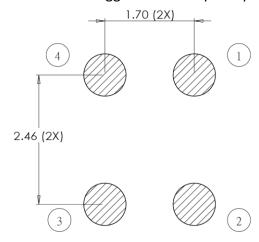


Figure 3: Top view of recommended landing pattern (unit: mm)

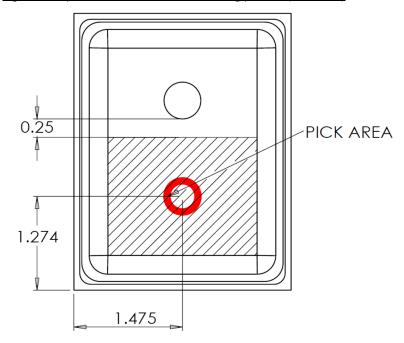


Figure 4: Recommended position of vacuum nozzle (unit: mm)

Note:

Tolerance of stencil mold and SMT process should be taken into consideration and make moderately adjustment on the stencil aperture dimensions.

P/N: 88A100021001

4. Recommended Interface Circuit

The MMA100 output can be connected to a codec microphone input or to a high input impedance gain stage. A dc-blocking capacitor is required at the output of the microphone.

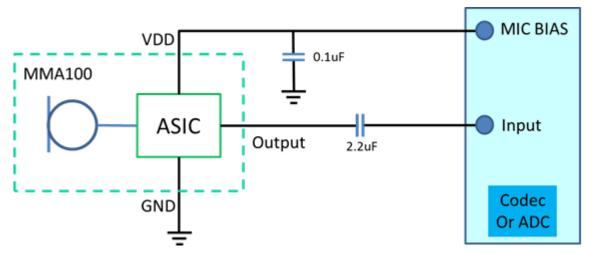


Figure 5: Connect to audio codec

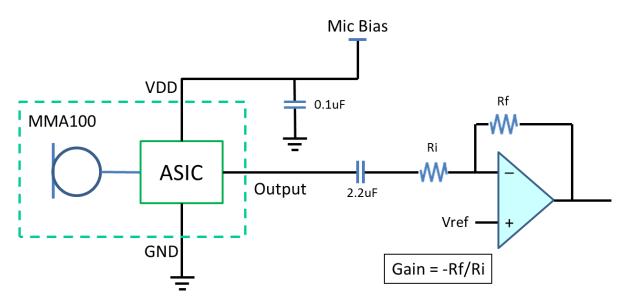
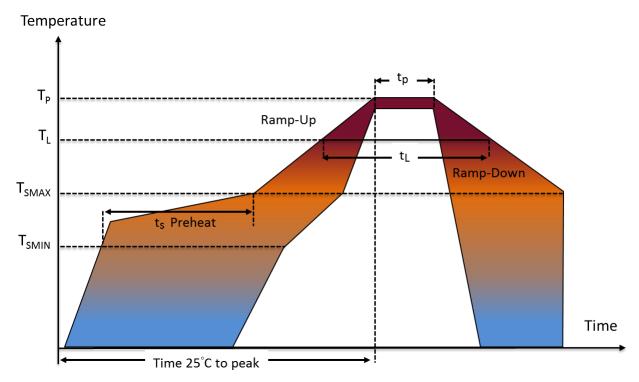
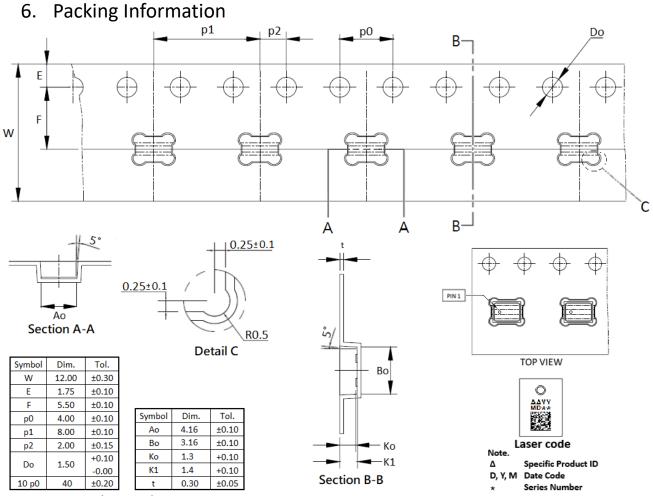


Figure 6: Connect to audio OPAMP

P/N: 88A100021001

5. Soldering Reflow Profile




Figure 7: Recommend solder reflow profile

Profile feature	Temperature profile (T)	Time (t)	
Prohest (T.) (T., to T.,)	T _{SMAX} =180°C	60-100 seconds	
Preheat (T _s) (T _{SMAX} to T _{SMIN})	T _{SMIN} =150°C	60-100 seconds	
Peak Temperature (T _P)	T260°C (May)	20-30 seconds	
Time within 5°C of actual Peak Temperature(t _P)	T _P =260°C (Max)		
Time maintained above Liquidus (T _L)	T _L =220°C	40-80 seconds	
Ramp-Up rate (T _{SMAX} to T _L)	180°C to 220°C	1.25 °C/seconds max	
Ramp-down rate (T _P to T _{SMAX})	260°C to 220°C	3 °C/seconds max	
Time 25°C to Peak Temperature		8 minutes max	

Note:

- Do not pull a vacuum over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device.
- Do not perform board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- ◆ Number of Reflow = recommend no more than 3 cycles
- ◆ To avoid the risk of the solder paste remelting, it's recommended that the furnace temperature should be lower than 245°C.

P/N: 88A100021001

- 1. Carrier camber is within 1 mm in 250 mm.
- 2. Material: Black Polystyrene
- 3. All dimensions meet EIA-481-C requirements.
- 4. Packing length per 13" reel: 46.5 Meters
- 5. ESD Inspection item(Surface resistance):

Carrier tape: $10.0*10^5$ ohm/sqr $^9.9*10^9$ ohm/sqr Cover tape: $10.0*10^5$ ohm/sqr $^9.9*10^9$ ohm/sqr

Reel: 10.0*10⁴ohm/sqr~9.9*10¹²ohm

Figure 8: Tape specification (unit: mm)

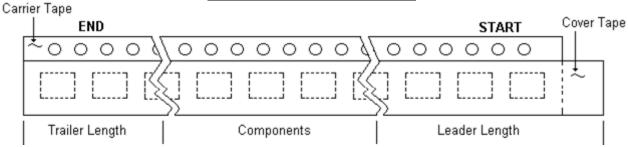


Figure 9: Definition of cover tape, carrier tape, trailer length and leader length

Trailer	Leader	Qty. Per
Length	Length	13" REEL
50 units	50units	5200

P/N: 88A100021001

7. Reliability

The sensitivity of the microphone shall not deviate more than ±3dB from its initial value after each test condition is performed.

Test item	Detail	Standard
Reflow simulation	Refer to solder reflow profile (p.9), total 5 times	
	1) baking: 125 °C / 24 hours.	
Mariata da Caraciti di	2) the infiltration (Moisture Sensitivity Level 1)	
Moisture Sensitivity	3) after completion of the infiltration test of 15 minutes	
Level	to 4 hours, finish the reflow soldering 3 times, top reflow	
	temperature of 260 degrees	
Low temperature	Conditions: -40±3°C	15000000 2 4
Storage	Duration: 1000 hours	IEC60068-2-1
High temperature	Conditions: 105±3°C	IEC60068-2-2
Storage	Duration: 1000 hours	1200000 2 2
To we we awart was also also	Conditions:	15000000 2 4
Temperature shock	100 cycles of air-air thermal shock from -40°C to 125°C with 15 minute soaks.	IEC60068-2-4
Vibration test	12 minutes in each X, Y, Z axis from 20 to 2,000 Hz with	MIL 883E,
	peak acceleration of 20 G	Method 2007.2,A
Temperature/Humidity	+85°C/ 85% R.H. environment while under max. supply	JESD22-A101A-B
Bias	voltage for 1,000 hours.	JESDZZ AIOIA B
	Conditions:	
Drop test	It falls three times each 8 corner 6 surfaces and 12 sides	IEC60068-2-32
	by the case of 150g .The height is 1.53m from granite floor	
	LID/GND: 10 discharges of ±8 kV direct contact to lid	IEC 61000-4-2
	while unit is grounded	
rcp.	ESD -HBM: 3 discharges of ±2 kV direct contact to I/O	MIL883E, Method
ESD	pins.	3015.7
	ESD -MM: 3 discharges of ±200 V direct contact to I/O	
	pins.	ESD STM5.2
Low temperature	Conditions: -40±3°C , V _{DD} = max. supply voltage	IEC60068-2-1
Operational	Duration: 1000 hours	
High temperature	Conditions: 105±3°C , V _{DD} = max. supply voltage	IEC60068-2-2
Operational	Duration: 1000 hours	
Machanical Charle	Conditions: 10,000 G for 0.1ms in the ±X, ±Y, and ±Z	IEC 68-2-27, Test
Mechanical Shock	direction Duration: 5 cycles of direction	Ea
	Duration, 3 cycles of direction	

Analog MEMS Microphone

MMA100-021

P/N: 88A100021001

8. Specification Revisions

Revision	Specification Changes	Date
А	Preliminary	06/26/2024
01	Initial Release	09/09/2024
02	Revise Pin configurations in Section2, P.4	09/20/2024